

- · Note that dynamically allocated memory remains allocated until:
 - The program terminates
 - The memory is deallocated with delete or delete[]
- This means that such memory is still accessible even after a function returns
 - The problem is that we must keep our hands on the address
 - If we lose the address, we lose the memory

- In this lesson, we will:
 - Discuss the lifetime of dynamically allocated memory
 - Author and discuss some functions that allocate, access and manipulate such memory
 - We will make changes that cannot be done with statically allocated memory

000

1

Lifetime of dynamically allocated memory

Allocating instances of a type

- · We will author three functions:
 - The first allocates an array of the required size
 - The second allows the user to make a change to the array
 - The third cleans up the array and deallocates it

