
2020-10-01

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Lifetime of dynamically
allocated memory

2
Lifetime of dynamically allocated memory

Outline

• In this lesson, we will:

– Discuss the lifetime of dynamically allocated memory

– Author and discuss some functions that allocate, access and
manipulate such memory

• We will make changes that cannot be done with statically allocated
memory

3
Lifetime of dynamically allocated memory

Lifetime

• Note that dynamically allocated memory remains allocated until:

– The program terminates

– The memory is deallocated with delete or delete[]

• This means that such memory is still accessible even after a function
returns

– The problem is that we must keep our hands on the address

– If we lose the address, we lose the memory

4
Lifetime of dynamically allocated memory

Allocating instances of a type

• We will author three functions:

– The first allocates an array of the required size

– The second allows the user to make a change to the array

– The third cleans up the array and deallocates it

2020-10-01

2

5
Lifetime of dynamically allocated memory

Allocate and initialize

• The first function will:

– Allocate an array of the required capacity

– It will take two additional arguments a and b

– It will initialize the array so that array[0] == a

 array[capacity - 1] = b

 and all other entries are equally spaced values between a and b

– It will return the address of the array

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

6
Lifetime of dynamically allocated memory

Allocating an array

• Allocate and initialize an array:
double *allocate(double a, double b, std::size_t const capacity) {

 assert(capacity >= 2);

 double *array{ new double[capacity] };

 // This will set array[k] = a + k*delta

 // so that array[0] = a

 // array[capacity - 1] = b

 double delta{ (b - a)/(capacity - 1.0) };

 for (std::size_t k{0}; k < capacity; ++k) {

 array[k] = a + k*delta;

 }

 return array;

}

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

r

d

7
Lifetime of dynamically allocated memory

Manipulating that array:

• Let us let the user manipulate the array
void manipulate(double *array, std::size_t const capacity) {

 while (true) {

 std::size_t k{};

 std::cout << "Which entry do you want to change? ";

 std::cin >> k;

 if (k >= capacity) {

 return;

 }

 std::cout << "What is the new value? ";

 std::cin >> array[k];

 }

}

8
Lifetime of dynamically allocated memory

Deallocating an array

• Clearing and deallocating the array
void deallocate(double *array, std::size_t const capacity) {

 for (std::size_t k{0}; k < capacity; ++k) {

 array[k] = 0.0;

 }

 delete[] array;

 array = nullptr;

}

2020-10-01

3

9
Lifetime of dynamically allocated memory

Using our functions
int main() {

 double *a_data{};

 std::size_t data_capacity{};

 std::cout << "Enter an array capacity: ";

 std::cin >> data_capacity;

 a_data = allocate(0.0, 10.0, data_capacity);

 manipulate(a_data, data_capacity);

 std::cout << a_data[0];

 for (std::size_t k{1}; k < data_capacity; ++k) {

 std::cout << ", " << a_data[k];

 }

 deallocate(a_data, data_capacity);

 a_data = nullptr;

 return 0;

}

10
Lifetime of dynamically allocated memory

Poor design?

• It seems a little awkward to have a function that clears and
deallocates the array sent to it…

– Perhaps we should just have a function

 void clear(double *array, std::size_t const capacity);

– Then our code would look like:

clear(a_data, data_capacity);

delete[] a_data;

a_data = nullptr;

– These problems will be fixed later when we look at objects

11
Lifetime of dynamically allocated memory

Static versus dynamic memory

• If we call the manipulate(…) function with a local array

– That is, one that is allocated on the call stack

 the function continues to work: it will manipulate that array

• If you call deallocate(…) with a local array,

 your program will crash: you cannot delete a local array

• You can try this yourself:

int main() {

 int array[100];

 delete[] array;

 return 0;

}

12
Lifetime of dynamically allocated memory

Local variables

• It is important to differentiate between local variables
and dynamically allocated memory

double *allocate(double a, double b, std::size_t const capacity) {

 assert(capacity >= 2);

 double *array{ new double[capacity] };

 double delta{ (b - a)/(capacity - 1.0) };

 for (std::size_t k{0}; k < capacity; ++k) {

 array[k] = a + k*delta;

 }

 return array;

}

2020-10-01

4

13
Lifetime of dynamically allocated memory

Summary

• Following this lesson, you now

– Have seen that we can pass or return dynamically allocated memory
by passing or returning addresses (pointers)

– Are aware it is important to make sure that you keep track of the
address, otherwise you lose that memory

– Understand that any function can call new or delete as long as the
appropriate address is correctly dealt with

– Know that when a local variable storing the address of dynamically
allocated memory goes out of scope, it is only that local variable that
is lost: the memory is still allocated

14
Lifetime of dynamically allocated memory

References

[1] https://en.wikipedia.org/wiki/New_and_delete_(C++)

15
Lifetime of dynamically allocated memory

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

16
Lifetime of dynamically allocated memory

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

